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Abstract 

The problem we study concerns routing a fleet of capacitated vehicles in real time to collect 

shipment orders placed by a known set of customers. On each day of operation, only a subset of 

all customers request service. Some of these requests are known at the beginning of the day, 

while the rest arrive dynamically during the day. It is not known when and from which 

customers these dynamic requests may come from. An example of such an application is the 

daily operation of a trucking company that consolidates shipments from multiple suppliers. 

 

The objective of this dynamic vehicle routing problem (DVRP) is three fold: first, to minimize 

the impact (on total travel distance) of knowing only partial information; second, to maximize 

the flexibility of the existing routes in a dynamic environment; third, to provide fast responses to 

dynamic customer requests. Thus, we propose an optimization-based, look-ahead dynamic 

vehicle routing framework that periodically re-optimizes the current vehicle routes by using both 

the known and forecasted information. Heuristic algorithms are designed to construct an initial 

solution, improve the initial solution, and adjust the waiting time along the vehicle routes. 

 

We perform simulation experiments on well-known benchmark problem instances in the 

literature. For each instance, we compare the quality of our solution with other routing strategies. 

We see that the look-ahead routing strategy with forecasting of future requests outperforms a 

routing strategy that only makes use of the known demand information, in terms of total travel 

distance for instances with relatively fewer advance requests and more dynamic requests. Thus 

the look-ahead dynamic routing strategy shows its merits for problems with high level of 

uncertainty. Overall our proposed approach could generate routing solutions that could reduce 

freight vehicle miles traveled, thus minimizing the impact of freight on passenger travel since 

they primarily share the same road network, especially in major urban centers like Los Angeles. 
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1. Introduction 

1.1 Background 

Many industries deal with the task of transporting massive amounts of goods over 

extended distances in a timely and cost-effective manner, including manufacturing, food, e-

commerce, etc. Logistics has become the backbone that enables the productivity and mobility of 

these industries (Montreuil et al., 2013). Indeed, growth in the transportation sector recently has 

been on par with the growth in the Gross Domestic Product (GDP) in the US. According to 

statistics from the 2013 National Transportation Statistics report (LaHood and Porcari, 2013), 

expenditure on transportation activities amounted to 1,426 billion dollars in 2012, representing 

nearly 9 percent of the total US GDP. The Los Angeles region, in particular, has a large and 

diverse economic base, driven by large manufacturing, trade, and transportation sectors (Ang-

Olson and Ostria, 2005). It is also ranked as one of the busiest freight centers in the US. Statistics 

show that in 2003, commodity flows into and out of the Los Angeles region totaled 588 million 

tonnage, of which trucking represented the biggest portion of 64 percent (Ang-Olson and Ostria, 

2005).  

However, the logistics sector as it is today functions in a way that is economically, 

environmentally, and socially unsustainable (Montreuil, 2011). For instance, the entire logistics 

sector is highly fragmented, with each supplier developing and operating its own distribution 

network that sees low capacity usage, high energy consumption, high greenhouse gas emission, 

and low workforce welfare (Montreuil, 2011). In order to compete effectively against their peers, 

companies have relied on internal optimization to reduce operating costs, but have overlooked 

opportunities for external consolidation. The increasing level of freight transportation also 

aggravates its impact on traffic congestion, and poses threats on the safety and efficiency of 

passenger traffic and other social functions that share the same road infrastructure. This 

phenomenon becomes more significant in densely populated urban areas, like Los Angeles. 

External consolidation allows the sharing of vehicle capacity, delivery routes, and 

shipment orders among different suppliers or logistic service providers, thus creating a unified 

logistics network that sees increased capacity usage, reduced energy cost, pollution, and 

operating costs. A shared freight network also reduces the total truck miles, which in turn 
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reduces the usage of the road infrastructure that it shares with passenger traffic. Similarly, 

reduced freight traffic helps alleviate traffic congestions and the safety threat it poses on 

passenger traffic.  

For example, the growth in the number of containers going through maritime container 

terminals has already introduced congestion and threatened the accessibility to these terminals. 

The congestion at a port, in turn, magnifies the congestion in the adjacent metropolitan traffic 

network. Besides, more and more container terminals require Just-In-Time (JIT) cargo delivery 

and pickup thanks to advances in information technologies, limited space for storing inbound and 

outbound containers, and increased competition. This constraint, together with others, demands 

higher service levels from trucking companies that fulfill transshipments of containers to and 

from the port. On the other hand, the highly competitive trucking industry is driven by the need 

to operate at the lowest possible cost, while satisfying consumer demand at the same time. These 

facts magnify the need for finding better ways of performing trucking operations in metropolitan 

areas adjacent to the ports. This problem falls in the scope of the Vehicle Routing Problem 

(VRP), which is formally defined as the problem of designing optimal routes of collection or 

delivery from one or several depots to a number of geographically dispersed customers. 

In addition, logistic service providers (LSP) face uncertainties throughout various stages 

of their operations, including variable waiting and travel times due to traffic congestion, arrival 

of new orders, cancellation of existing orders, and unknown order sizes. These uncertainties limit 

the applicability of existing truck routing techniques, which have been primarily designed to 

solve the static routing problem where all information are perfectly known a priori. That is why, 

in the real world, human operators (dispatchers) still play a major role in the route planning and 

vehicle scheduling in the trucking industry (Flatberg  et al., 2007; Laporte, 2009).  

 

1.2 Problem Description 

In this research, we aim to model and solve a truck routing problem that is representative 

of the daily operation of many logistic service providers, especially those who consolidate 

shipments from multiple suppliers. Suppose a trucking company operates a fleet of homogeneous 

vehicles to collect shipments from a known set of suppliers and transport the shipments back to a 

central depot. These suppliers can be seen as registered customers of the company. Their 
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locations and service time windows are known and fixed. However, each customer may not 

request service on each day. How often each customer requests service is determined by his/her 

own operation schedules, and can be seen as a given parameter in our problem. If a customer 

requests service, it can either do so at the beginning of the day (before the vehicles leave the 

depot), or at any time during the day. Customers who have requested service at the beginning of 

the day are called advance customers and must be serviced. All other customers, called dynamic 

customers, may potentially request service, but the company does not know whether and when 

they will do so. The company may have to reject a dynamic customer when he/she requests 

service if his/her shipment cannot be accommodated. 

The situation described above can be modeled as a Dynamic Vehicle Routing Problem 

(DVRP). A DVRP is derived from a VRP when some information in the problem is revealed 

dynamically over time, instead of known before the vehicles are dispatched. In our problem, the 

set of customers needed to be serviced is random. 

 

1.3 Motivation 

The transportation industry, like many others, has undergone significant change in the 

last few years through the introduction of information technologies.  Examples include: 

 Vehicle tracking, such as global-positioning-systems (GPS), which allow vehicle 

locations to be determined with 3-meter level accuracy. 

 Wireless communication, via satellite, cellular and paging networks, which enable 2-

way communication with mobile fleets. 

 Real-time information services, which allow for dynamic calculation of travel speeds.   

Whereas in the past, it was difficult for a company to control or route vehicles once they 

left the terminal, these technologies make accurate dynamic real-time routing a very real 

possibility. Therefore, the dynamic VRP has emerged as an active and intense area of research, 

both due to industry needs, but also due to technological advances, including map databases, 

location determination technology (e.g., GPS), wireless communication and mobile computing. 

In the vehicle routing problem, the customer demands, travel costs, and travel times are 

known in advance. The fundamental problem is to determine the optimal route that minimizes a 

certain objective such as fleet size and travel distance. Well-established routing and scheduling 
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algorithms that lead to optimum solutions have been presented in the literature. The built-in 

assumption of these approaches is that there will be small deviations on the realization of the 

demand and travel times from the plan so that the pre-determined routes form a basis for either 

the pickup or delivery schedule. However, in a highly dynamic and stochastic environment, the 

pre-planned optimal routes are no longer of practical use. In this case, most of the research effort 

has focused on easy to control dispatching rules in highly dynamic stochastic environments. The 

use of information technology in freight transportation systems has the potential to narrow the 

gap between highly uncertain systems in reality and the perfectly known static systems in theory. 

Hence, on one end of the spectrum are the route planning techniques when it is 

reasonable to assume the system is deterministic and on the other end are the dispatching 

heuristics when the system is highly dynamic and uncertain.   Therefore, there exists a gap in the 

literature for situations that are in between the two ends of the spectrum.  To address this gap, 

there is a need to study the relationship between the uncertainties in the networks and the level of 

route planning in the freight transportation techniques. 

The objective is to develop routing techniques that react better to uncertainties in demand 

to improve the operations of the trucking industry in terms of reducing vehicle miles, thus 

minimizing the impact of freight on passenger travel since they primarily share the same road 

network, especially in major urban centers like Los Angeles. We propose an optimization-based 

look-ahead vehicle routing framework that models and solves the dynamic vehicle routing 

problem by employing existing heuristics in the literature that are originally designed to solve 

static vehicle routing problems. In order to generate better solutions for problems with various 

degrees of uncertainty, the behavior of the proposed framework is tunable by adjusting different 

parameter settings of the framework and the heuristics.  

 

1.4 Structure of the Report 

The rest of the report is organized as follows. In Section 2, a literature review of the 

relevant problems is presented. Section 3 formally defines the problem and describes the look-

ahead routing framework. In Section 4, all heuristic algorithms embedded in the solution 

framework are presented. Section 5 presents the experimental results of our solution framework 
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on a number of well-known benchmark problem instances in the literature. In Section 6, we 

discuss the implementation and applicability of our work. We conclude in Section 7. 
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2. Literature Review 

In this section, we review the literature relevant to our research. The stochastic and 

dynamic vehicle routing problems have received a significant amount of attention in the 

literature during the last decade. In a stochastic vehicle routing problem (SVRP), not all 

information are known with certainty. Instead, only stochastic information is available for some 

elements of the problem. The randomness in the problem is usually realized before the vehicles 

are dispatched. However, in a dynamic vehicle routing problem (DVRP), uncertainties are 

revealed dynamically over time, during the planning horizon. Thus the current solution (vehicle 

routes) needs to be updated dynamically according to new information available in the system. 

The problem we study falls under the category of DVRP. We first review the studies on the 

stochastic and dynamic vehicle routing problems in general. We briefly introduce a classification 

system of various kinds of dynamic vehicle routing problems and their solution approaches and 

then review recent studies on solution approaches that are of the same category as ours. 

 

2.1 Stochastic and Dynamic Vehicle Routing Problem 

The problem we study falls under the category of DVRP. Dynamic vehicle routing 

problems arise naturally from a broad spectrum of real-world applications, including courier 

routing (Sungur et al., 2010), fleet configuration, inventory routing, Dial-a-Ride systems (Diana 

and Dessouky, 2004), etc. DVRP differentiates from the classic vehicle routing problem (VRP) 

in that some element of the problem is random and dynamic. Recent reviews on the DVRP are 

conducted by Pillac et al. (2013), by Laporte (2009), and by Bianchi (2000). 

There are many potential sources of randomness in the DVRP. For example, the set of 

customers to serve may not be known with certainty; a customer may only request service by a 

given probability. Sometimes, the demand of a customer may not be known when the routing 

decisions have to be made. In addition, the cost matrix could also be stochastic, reflecting 

random travel times between locations due to varying traffic conditions. In a specific stochastic 

vehicle routing problem, randomness could come from a single source or multiple sources. Mix-

and-match among potential sources of randomness makes the number of types of DVRP 
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problems grow exponentially. Therefore we briefly introduce a classification system of various 

problems and solution approaches presented in the literature. 

We can classify a problem based on the following aspects. 

 Whether a customer shows up or not 

o Deterministic 

o Stochastic 

o Dynamic 

o Partially dynamic 

 Size of customer demand 

o Deterministic, known a priori 

o Known when service request is made 

o Known upon arrival at the customer 

 Other sources of uncertainties 

o Stochastic customer location 

o Dynamic service time window 

o Stochastic service time 

o Stochastic travel time/cost 

The most common source of randomness in a dynamic vehicle routing problem lies in 

whether a customer will show up or not, and the size of demand of each customer (Gendreau et 

al., 1996). These two sources of randomness are reflected in the first aspect stated above. For the 

first aspect, a problem may consist of all deterministic customers, stochastic customers (realized 

before vehicles are dispatched), dynamic customers (realized in real time), or partially dynamic 

customers (combination of deterministic and dynamic customers). For the second aspect, the 

demand of each customer may be deterministic (known a priori), known when service is 

requested, or known upon arrival at the customer. For the third aspect, possible sources of 

uncertainties not covered by the first two aspects include stochastic customer location, dynamic 

service time window, stochastic service time, stochastic travel time/cost, etc. 

We can also classify a solution approach proposed for a dynamic vehicle routing problem. 

We introduce the following aspects. 

 Modeling approach 

o Static routing 
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o Reactive routing 

o Proactive routing 

o Local dynamic routing 

o Look-ahead dynamic routing 

 Modeling technique 

o Robust optimization 

o Chance constrained model 

o Stochastic programming 

o Dynamic programming 

o Markov Decision Process (MDP) 

o Linear programming 

 Solution technique 

o Exact algorithms 

o Heuristics 

The modeling approach refers to the high level architecture of a solution. An approach is 

called static if vehicles follow a priori routes and take recourse actions when needed. It is called 

reactive routing if no planning is made and the decision maker relies solely on insertion and re-

optimization when information in the system changes (Secomandi and Margot, 2009). Proactive 

routing describes the situation when strategic moves are made in anticipation of future system 

states. Such moves include preventive restocking, strategic waiting (Bent and Van Hentenryck, 

2007; Branke et al., 2005; Thomas, 2007), etc. In a problem where new customer requests occur 

dynamically over time, route planning may choose to forecast future requests based on historical 

information. If they do so, the approach is called look-ahead dynamic. Rather, if no forecast is 

made, the approach is called local dynamic. The notion of “local dynamic” and “look-ahead 

dynamic” were first introduced by Chen and Xu (2006). 

The modeling technique refers to the exact mathematical technique used to formulate the 

problem. Also, we can classify a solution approach based on the techniques used to solve the 

problem. Due to the complexity of dynamic vehicle routing problems, most of the techniques 

proposed in the literature fall into the heuristics category. 

The problem we study can be classified as having partially dynamic customers, with 

demand known when service request is made, and no other uncertainties. The solution approach 
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we propose is a look-ahead dynamic, reactive vehicle routing approach. We use mixed integer 

programming to formulate the corresponding static vehicle routing problems, and use heuristic 

algorithms to solve them. 

 

2.2 Periodic Re-optimization Approaches in DVRP 

Since the vehicle routing problem has been extensively studied in the literature, one of 

the most intuitive approaches to solve a dynamic vehicle routing problem is to convert the 

dynamic problem into (possibly many) static problems and solve them sequentially. This 

approach is called re-optimization. Depending on how often static problems are constructed and 

solved, this approach involves into either the periodic re-optimization approach or the continuous 

re-optimization approach. The solution we propose adapts the periodic re-optimization approach. 

In particular, the planning horizon is divided into intervals of fixed length. Optimization of the 

current vehicle routes is conducted at the beginning/end of each time interval. 

Psaraftis (1980) introduced periodic re-optimization using a dynamic programming 

approach. Chen and Xu (2006) considered a dynamic vehicle routing problem with hard time 

windows. They assumed that the dispatcher does not have any deterministic or probabilistic 

information on the location and the size of a customer order until it arrives. They embedded a 

dynamic column-generation-based algorithm into a periodic re-optimization framework. The 

approach showed its merits when compared with insertion-based heuristics on most problems. 

Metaheuristics were developed to be combined with the periodic re-optimization 

framework. Montemanni et al. (2005) developed an Ant Colony System (ACS) to solve the 

vehicle routing problem with dynamic customers. One of the mechanisms of their solution is to 

hold dynamic customers that arrive within a time period until the end of that period. That is, 

customer requests are not handled immediately. This is not a desired feature of the solution we 

propose, because we want to provide dynamic customers with instant responses on whether they 

can be serviced or not. 

Secomandi and Margot (2009) studied a vehicle routing problem with stochastic demands. 

The actual demand is only known when the vehicle arrives at the customer. The authors 

developed a finite-horizon Markov Decision Process (MDP) formulation for the single vehicle 

case. A partial re-optimization heuristic is proposed to solve the MDP. The authors compared 
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multiple heuristics to embed in the re-optimization framework. They argued that their best 

approach outperforms existing heuristics. 

 One major limitation of the re-optimization approach lies in the fact that all optimization 

needs to be performed before the decision maker can update each vehicle with its new route, 

potentially causing delays in routing operations (Pillac et al., 2013). The proposed approach 

mitigates the effect of this limitation by employing computationally fast heuristics and limiting 

the length of the look-ahead horizon. First, the construction, local search, and wait time 

adjustment heuristics largely use constant time calculations to reduce run time. Second, the 

solution framework uses an adjustable parameter to control the length of the look-ahead horizon, 

thus limiting the amount of computation needed at each decision epoch. 
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3. Solution Framework 

In order to effectively model and solve this vehicle routing problem with dynamic 

customers, we setup multiple objectives to meet. Some of them will be explicitly included in the 

cost function, while others being implicitly designed into the solution framework. The objectives 

are: 

 Minimize total travel distance. 

 Minimize number of vehicles used. 

 Maximize the flexibility of our solutions in a dynamic environment. 

 Provide fast responses to the dynamic customers when they request service. 

Thus we develop an optimization-based, look-ahead dynamic vehicle routing framework 

that instantly handles new information in the system and periodically re-optimizes current 

vehicle routes by using both realized and forecasted information. More specifically, we divide 

the planning horizon into time periods of equal length, and designate the beginning of each time 

period as a decision epoch. At each epoch, a static vehicle routing problem containing both know 

and forecasted information is solved. The solution is implemented according to pre-defined rules 

until the next decision epoch, or the end of the time horizon. In the following subsections, we 

first formally define the problem and then present the solution framework in detail by explaining 

the events in the dynamic environment.  

 

3.1 Problem Definition 

Suppose that we are making routing schedules for daily operations of a trucking company 

that collects shipments from a set of customers and transports them to a central depot. The 

planning horizon is one day, and is discretized into time steps. The length of the planning 

horizon is denoted as 𝑇𝑚𝑎𝑥 . The company operates a fleet of homogeneous and capacitated 

vehicles. There are 𝑁  potential customers (suppliers). Each customer has a fixed location, a 

known demand size, a known service time window and a service time of fixed length. Service 

time windows specify the earliest and latest times when service can be started at the 

corresponding customers. Each customer requests service at most once on each day. All these 
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information are deterministic and known a priori. The uncertainty lies in the fact not all 

customers request service every day. Some customers request service in advance, and are called 

advance customers. These requests are known at the beginning of the day. The rest of the 

customers are called dynamic customers, and they may or may not request service on that day. 

We assume that the probability a dynamic customer requests service is given (derived from 

historical information). The time when a dynamic customer requests service is called his/her 

request time. Request times are random variables. 

We use the following notations. Generally, we use 𝑖, 𝑗 to index customers, 𝑘 to index 

vehicles, and 𝑡 to index time. 

Customers and requests: 

𝑁: total number of customers 

𝔸ℂ: set of advance customers 

𝔻ℂ: set of dynamic customers 

𝑑𝑖: demand of customer 𝑖 

𝑠𝑖: service time of customer 𝑖 

𝑟𝑖: request time of customer 𝑖 

𝑒𝑖:  the earliest time that service can begin for customer 𝑖 

𝑙𝑖:  the latest time that service can begin for customer 𝑖 

 

Cost parameter: 

𝑡𝑖,𝑗:  minimum travel time between node 𝑖 and  j 

 

Vehicles: 

𝐾: total number of customers 

𝐶: capacity of each vehicle 

 

A realization of the dynamic vehicle routing problem (for a day) is fully determined by a 

set of advance customers and the request times of all dynamic customers who end up requesting 

service on that day. We assume that historical information is available concerning when each 

customer is likely to make a request. That is to say, each customer’s request time is a random 

variable following a conditional probability distribution function 𝑓𝑖(𝑡)  defined on the interval 



 
 

21 

 

[0, 𝑒𝑖], meaning that each customer must make the request before the beginning of his/her service 

time window. 

The company operates a centralized decision making unit with real-time two-way 

communication capability with all vehicles. At any point in time, the decision maker is aware of 

the state of each customer and the location and state of each vehicle. When a dynamic customer 

requests service, the decision maker instantly accepts or rejects the request based on feasibility. 

Feasibility of the problem is defined with respect to vehicle capacity and customer time window 

constraints. 

 

3.2 Customer States and Transitions 

At any time instant 𝑡, each customer belongs to one and only one of the following five 

customer states. They are: 

 Unconfirmed customer 𝕌(𝑡). Customers who have yet to request service, and are not 

anticipated to request in the near future. At the beginning of the day, the set of 

unconfirmed customers initializes to the set of dynamic customers. 𝕌(0) = 𝔻ℂ. 

 Confirmed customer ℂ(𝑡). Customers who have requested service. The requests are 

confirmed (guaranteed to be serviced), but not yet serviced. At the beginning of the 

day, the set of confirmed customer initializes to the set of advance customers. ℂ(0) =

𝔸ℂ. 

 Serviced customer 𝕊(𝑡). Customers whose requests have been serviced. 

 Rejected customer ℝ(𝑡) . Customers who have requested service, but have been 

rejected. 

 Anticipated customer ℝ(𝑡) . Customers who have yet to request service, but are 

anticipated based on the forecast. Different forecast procedures are described in 

Section 3.4.1. 
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The state of each customer changes over time. State changes are triggered by certain 

dynamic events. The definition of all the events are given in Section 3.4. We now define 

transitions between customer states. Figure 3.1 illustrates all possible transition relationships 

between customer states.  

 

We now explain each transition and specify the corresponding trigger event. 

1. An unconfirmed customer becomes confirmed once he/she requests service and the 

request is accepted. Trigger event: new request. 

2. A confirmed customer becomes serviced once a vehicle starts to travel to the customer. 

This vehicle is committed to reach the customer and collect the shipment from the 

customer. Equivalently speaking, we do not allow pre-emption in vehicle routes. Trigger 

event: vehicle departure. 

3. An unconfirmed customer becomes rejected once he/she requests service and the request 

is rejected. Trigger event: new request. 

4. An unconfirmed customer becomes anticipated if he/she has a “high chance” of making a 

request in the “near future”. This kind of state transition is solely determined by the 

forecast procedure, which is embedded in the decision epoch. Trigger event: decision 

epoch. 

Figure 3.1 Customer States and Transitions 
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5. An anticipated customer becomes confirmed once he/she requests service and the request 

is accepted. Note that the difference between type 5 and type 1 transitions lies in the 

initial state of the customer, equivalently, whether the customer is anticipated to make a 

request when he/she actually does. Trigger event: new request. 

6. An anticipated customer becomes rejected once he/she requests service and the request is 

rejected. Similarly as above, the difference between type 6 and type 3 transitions lies in 

the initial state of the customer. Trigger event: new request. 

7. An anticipated customer becomes unconfirmed if he/she does not make a request during 

the time period following the decision epoch at which he/she becomes anticipated. At the 

beginning of the next time period (a decision epoch), such customers are first moved 

back into the unconfirmed set. They may be anticipated again if they are selected again 

by the forecast scheme. The only exception is the last time period in the horizon, which is 

not followed by another decision epoch, since the end of horizon is reached. In this case, 

the difference between anticipated and unconfirmed states becomes irrelevant. Trigger 

event: decision epoch.  

 

3.3 Partial Problem and Partial Solution 

In a static vehicle routing problem, all information are perfectly known and are 

deterministic. The solution specifies a sequence of customer visits for each vehicle. In a dynamic 

vehicle routing problem, however, information are revealed gradually over time. The full 

realization of randomness cannot be known before the end of the day. Any time during the day, 

only partial information is known. We call it a partial vehicle routing problem 𝑃𝑡. The solution to 

a partial problem at time 𝑡 is called a partial solution 𝑆𝑡. Partial solutions need to be constantly 

updated and modified according to new information revealed throughout the planning horizon. A 

partial solution is a collection of partial routes. 𝑆𝑡 = {𝑟𝑘} where 𝑘 = 1,… , 𝐾 . A partial route 

consists of a sequence of customer locations 𝑟𝑘 = {𝑛0,𝑘, 𝑛1,𝑘, … , 𝑛|𝑟𝑘|,𝑘, 𝑛|𝑟𝑘|+1,𝑘}  where |𝑟𝑘| 

denotes the number of customers served by route 𝑘. Two special place holder nodes 𝑛0,𝑘 and 

𝑛|𝑟𝑘|+1,𝑘 are used to denote the starting and ending point of each route. 𝑛|𝑟𝑘|+1,𝑘 = 0 for all 𝑘 and 

at all times because all routes terminate back to the depot. 𝑛0,𝑘 denotes the last customer that has 
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been served by the vehicle, which is also the starting position of this route. At 𝑡 = 0, 𝑛0,𝑘 = 0 

for all 𝑘 since all vehicle routes start at the depot at the beginning of the day. 

In a dynamic context, the sequence of customer visits alone does not uniquely determine 

a vehicle route. In addition, we need to distribute the slack time along each vehicle route and 

specify the time when each vehicle arrives at and departs from each customer location. We use 

𝑎𝑖  and 𝑏𝑖 to denote the arrival and departure times at customer 𝑖 respectively. Different choices 

among ways to distribute the waiting time at each customer have shown to have an impact on the 

solution quality. We introduce two waiting time adjustment procedures, namely the Push 

Backward and Push Forward procedures. We will introduce them formally in Section 4.3. 

At any time 𝑡, the partial solution accommodates all confirmed customers ℂ(𝑡)  and as 

many anticipated customers 𝔸(𝑡)  as possible. How partial solutions are constructed will be 

explained in Section 4. 

 

3.4 Dynamic Events 

In a dynamic vehicle routing environment, information is revealed gradually over time, 

instead of being known a priori. The central decision maker encounters various kinds of events 

throughout the planning horizon, including decision epoch, vehicle departure, and new request. It 

is important to note that “new request” is the only type of the above events outside the control of 

the decision maker. That is to say, a realization of the dynamic vehicle routing problem is fully 

determined by a set of advance customers 𝔸ℂ and a series of new request events, each specifying 

the time of request of one dynamic customer in 𝔻ℂ. On the other hand, decision epochs and 

“vehicle departure” are events setup by the solution procedure that are used to implement the 

solution. The time when these events occur are fully determined by the solution procedure. 

Figure 3.2 illustrates the time dynamic of the events. The horizontal axis refers to the 

planning horizon. Decision epochs are pre-designed into the time horizon and occur periodically 

at fixed intervals. Vehicle departure and new request events may occur at any time. We now 

explain what happens at each event in detail. 
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3.4.1 Decision Epoch 

The decision epochs are the key component of the dynamic vehicle routing framework. 

The entire planning horizon is equally divided into 𝑀 time periods. The beginning of each time 

period is called a decision epoch. Therefore the first decision epoch occurs at time 0. At each 

decision epoch, five solution procedures are called sequentially to construct and solve a 

deterministic vehicle routing problem. The procedures combine both the known information at 

the time, and forecasted information about the near future. The number of decision epochs 

(𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ) and the length of the forecast horizon (𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛) are parameters of the 

framework. We will discuss more about the solution parameters in Section 5.2. 

Figure 3.3Figure 3.3 illustrates the solutions procedures called at each decision epoch. 

We now introduce the first two procedures and present the heuristics used for solution 

construction in Section 4. 

The System Snapshot Procedure identifies the current the state of the problem and 

starts to construct a static vehicle routing problem. It first moves all customers in the anticipated 

set to the unconfirmed set. Those customers were anticipated at the last decision epoch, but have 

yet to request service. Time has elapsed and the probability that these customers will request 

service within the 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 starting from the current time has changed. Thus we first 

empty the anticipated set and reconstruct it by using one of the forecast procedures.  

Figure 3.2 Time Dynamic of Events 
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The procedure then empties all the current partial vehicle routes. Those routes were 

constructed and optimized based on the information acquired and forecasted  at the last decision 

epoch. They will be re-constructed and re-optimized to reflect the new information revealed in 

the system and updated forecast on future requests. There is one exception when removing 

customers scheduled on partial vehicle routes. If the first customer scheduled on the route is a 

confirmed customer, and the scheduled arrival time at the customer is within a pre-defined 

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 amount from the current time, then the customer remains on the same route. This 

mechanism guarantees the feasibility of confirmed customers who have to be serviced soon from 

the current time. The complete process is shown below. 

 

System Snapshot Procedure 

Input: customer states, partial solution 𝑆𝑡 

Output: updated customer states, updated partial solution 

 

for all customers in 𝔸(𝑡) 

remove from 𝔸(𝑡) and insert into 𝕌(𝑡); 

for all non-empty vehicle routes 𝑟𝑘 

if 𝑛1,𝑘 ∈ ℂ(𝑡) and 𝑎𝑛1,𝑘 ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

  remove 𝑛2,𝑘 through 𝑛|𝑟𝑘|,𝑘; 

else remove 𝑛1,𝑘 through 𝑛|𝑟𝑘|,𝑘; 

Figure 3.3 Solution Procedures at Decision Epoch 
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Immediately following the system snapshot procedure is the request forecast procedure. 

This procedure exploits stochastic information on the customer request time to forecast future 

requests. We implement two basic forecast methods, namely threshold forecast and sampling 

forecast. Both methods depend on the parameter 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛, which specifies the number 

of time steps to look ahead. The threshold forecast procedure also depends on the parameter 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, which is the smallest probability value above which the customer will be included in 

the anticipated set. 

The rationale behind the Threshold Forecast is to calculate the probabilities that each 

unconfirmed will request service within the 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛, called 𝑝𝑖. We then include the 

customers whose probability of request is higher than a pre-defined threshold in the anticipated 

set. The higher the threshold, the fewer customers we anticipate, and thus the higher the quality 

of anticipation, because the chance that these anticipated customers will actually request service 

and become confirmed is higher.  

 

Threshold Forecast 

Input: customer states 

Output: updated customer states 

 

Let 𝑡1 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 and 𝑡2 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 + 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛.  

for each customer 𝑖 in 𝕌(𝑡) 

 𝑝𝑖 = ∫ 𝑓𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1
; 

 if 𝑝𝑖 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

  remove 𝑖 from 𝕌(𝑡), insert 𝑖 into 𝔸(𝑡); 

 

By anticipating all customers with high probabilities of making a request, the threshold 

procedure implicitly assumes that these customer will all make requests. However, the 

probability that all of these customers make requests is the product of probabilities that each 

customer makes a request, which is significantly lower than the probability that any customer 

makes a request. Thus the threshold procedure anticipates a scenario that has a much lower 

probability of happening. 
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Thus we have also developed the Sampling Forecast. We first calculate the probability 

that each unconfirmed customer will make a request within the 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 in the same 

way as described above. Then we build a scenario consisting of a collection of new request 

events by sampling the joint probability distribution of all requests. By assuming that customers 

make requests independently from each other, we can simply sample each customer in sequence. 

The procedure is shown below. 

 

Sampling Forecast 

Input: customer states 

Output: updated customer states 

 

Let 𝑡1 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒, 𝑡2 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 + 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛.  

for each customer 𝑖 in 𝕌(𝑡) 

 𝑝𝑖 = ∫ 𝑓𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1
; 

 sample 𝑢 ∼ 𝑈𝑛𝑖(0,1); 

 if 𝑢 ≤ 𝑝𝑖 

  remove 𝑖 from 𝕌(𝑡), insert 𝑖 into 𝔸(𝑡); 

3.4.2 Vehicle Departure 

As stated in the previous sections, the solution to a dynamic vehicle routing problem 

needs to specify the arrival and departure times at each customer. Event “vehicle departure” 

refers to the incident that a vehicle leaves its current location for another location. These 

locations can be the depot or any customer location. Since we do not allow preemption of the 

vehicle routes (the vehicle is committed to service a customer once it starts to travel to that 

customer), a “vehicle departure” event triggers a state transition of the destination customer 

(from confirmed to serviced). 

A partial solution accommodates both confirmed customers and anticipated customers. 

Thus there are two types of vehicle departure events. Those when the vehicle departs for a 

confirmed customer, and those when the vehicle departs for an anticipated customer. The 

following description shows what happens at a vehicle departure event. 
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Vehicle Departure Event 

Input: customer states, partial solution 𝑆𝑡, vehicle 𝑘 is about to leave for customer 𝑖 

Output: updated customer states, current partial solution 𝑆𝑡 

 

if i ∈ ℂ(t) 

 remove 𝑖 from ℂ(t), insert 𝑖 into 𝕊(t); 

else  

 remove 𝑖 from 𝔸(t), insert 𝑖 into 𝕌(t); 

 Push Backward route 𝑘; 

 Push Forward route 𝑘; 

 

The Push Backward and Push Forward algorithms are components of the waiting time 

adjustment heuristic. They are designed to distribute the slack time along vehicle routes. The 

Push Backward procedure tends to push all arrival and departure times towards to the beginning 

of the time horizon (𝑡 = 0), while the Push Forward procedure tends to push all arrival and 

departure times towards the end of the horizon (𝑡 = 𝑇𝑚𝑎𝑥). Both procedures will be described in 

detail in Section 4.3. It is important to point out that, by construction, vehicles do not travel to 

anticipated customers before they become confirmed. Thus, anticipated customers are moved 

into the unconfirmed set if they have not made a service request by the time the vehicle is ready 

to service them on the route. 

 

3.4.3 New Request 

Recall that a realization of the dynamic vehicle routing problem is fully determined by a 

set of advance customers and a series of new request events, each specifying the time of request 

of one dynamic customer. New request is the only type of dynamic event not controlled by the 

decision maker. Since each customer makes at most one request per day, new requests during the 

day can only come from either an unconfirmed customer, or an anticipated customer. The only 
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difference being that an unconfirmed customer does not exist in the current routes while an 

anticipated customer may have been scheduled into the current routes at the last decision epoch.  

 

New Request Event 

Input: customer states, partial solution 𝑆𝑡, new request from customer 𝑖 

Output: updated customer states, current partial solution 𝑆𝑡 

 

if i ∈ 𝔸(t) and 𝑖 ∈ 𝑆𝑡 (customer is routed) 

 remove 𝑖 from 𝔸(t), insert 𝑖 into ℂ(t); 

 Push Backward route 𝑘; 

 Push Forward route 𝑘; 

else if i ∈ 𝔸(t) and 𝑖 ∉ 𝑆𝑡 (customer is not routed) 

 check feasibility of inserting customer 𝑖 into 𝑆𝑡; 

if feasible 

  insert 𝑖 to the cheapest position using Insert One Customer; 

  remove 𝑖 from 𝔸(t), insert 𝑖 into ℂ(t); 

 else remove 𝑖 from 𝔸(t), insert 𝑖 into ℝ(t); 

else (customer is not anticipated) 

check feasibility of inserting customer 𝑖 into 𝑆𝑡; 

 if feasible 

  insert 𝑖 to the cheapest position using Insert One Customer; 

  remove 𝑖 from 𝕌(t), insert 𝑖 into ℂ(t); 

 else remove 𝑖 from 𝕌(t), insert 𝑖 into ℝ(t); 
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4. Heuristic 

In this section we present the heuristics used to construct, improve, and update the partial 

solutions throughout the planning horizon.  

 

4.1 Construction Heuristic 

As described in Section 3.4.1, the construction heuristic is called at each decision epoch 

to construct an initial solution to the partial dynamic vehicle routing problem. The partial 

problem contains all confirmed (but yet to be serviced) customers ℂ(𝑡), and a set of anticipated 

customers 𝔸(𝑡). All confirmed customers must be routed, while anticipated customers are routed 

until it is no longer feasible to schedule them on the existing routes. We develop an insertion-

based heuristic that constructs all vehicle routes in parallel. This construction heuristic aims to 

minimize both total travel distance and the number of vehicles used. At each iteration, we 

calculate an impact measure of inserting each candidate customer into each feasible position in 

the partial solution. The measures are sorted. The customer with the lowest impact measure is 

inserted into the corresponding cheapest position. 

We hereby introduce the general version of the heuristic as Algorithm 1. We use 

“candidate customers” to denote the set of all customers needed to be routed. 

 

Algorithm 1: Construction Heuristic 

Input: candidate customers 𝐶𝐶, partial solution 𝑆𝑡 

Output: updated partial solution 𝑆𝑡 

 

while 𝐶𝐶 ≠ ∅ 

 for each customer 𝑖 ∈ 𝐶𝐶 

  for each vehicle route 𝑟𝑘 ∈ 𝑆𝑡 

   for each feasible insertion position (𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) ∈ 𝑟𝑘 

    calculate 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘); 

 sort 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) and find minimum; 
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 insert 𝑖 into 𝑟𝑘
∗ at position (𝑛𝑗−1,𝑘

∗ , 𝑛𝑗,𝑘
∗ ), corresponding to the minimum impact; 

 remove 𝑖 from 𝐶𝐶; 

 

𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) is a weighted average of both direct marginal travel distance 

and other surrogate cost measures of inserting customer 𝑖  into route 𝑟𝑘  at position 

(𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘), 0 ≤ 𝑗 ≤ |𝑟𝑘| + 1 . Initial work on such impact measurements are presented by 

Solomon (1987) and Ioannou et al. (2001). We first present components of the impact measure, 

namely the self-impact 𝑆𝐼, external-impact 𝐸𝐼, and internal-impact 𝐼𝐼. 

1. 𝑆𝐼(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) denotes self-impact. Let 𝑎𝑖(𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) denote the arrival time at 

customer 𝑖   if it is inserted into position (𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) on route 𝑟𝑘 . Then the self-

impact is calculated as the difference between the arrival time at customer 𝑖 and the 

earliest time to start service at this customer. Self-impact measures the coverage of 

the service time window of customer 𝑖 . A smaller value means extra slack time 

available for the insertion of an additional customer before or after 𝑖 on route 𝑟𝑘. 

𝑎𝑖(𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) = max(𝑒𝑖, 𝑎𝑛𝑗−1,𝑘 + 𝑠𝑛𝑗−1,𝑘 + 𝑡𝑛𝑗−1,𝑘,𝑖) 

𝑆𝐼(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) = 𝑎𝑖(𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) − 𝑒𝑖 

 

2. 𝐸𝐼(𝑖) denotes external-impact. It measures the impact of inserting customer 𝑖 on other 

un-routed candidate customers 𝐶𝐶\{𝑖} . Whenever we schedule an additional 

customer on the current vehicle routes, it becomes more difficult to schedule other 

customers due to potential time window infeasibility. The external-impact measures 

the amount of time window overlap between customer 𝑖  and all other un-routed 

customers. A smaller external-impact value means less overlap between the time 

windows, and less of an impact on the un-routed customers. The value of external-

impact does not depend on the position of insertion. Rather, it only depends on the 

customer we insert, and the current set of un-routed customers. 

𝐸𝐼(𝑖) =
1

|𝐶𝐶| − 1
∑ max{(𝑙𝑗 − 𝑒𝑖 − 𝑡𝑖,𝑗), (𝑙𝑖 − 𝑒𝑗 − 𝑡𝑖,𝑗)}

𝑗∈𝐶𝐶\{𝑖}
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3. 𝐼𝐼(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) denotes internal-impact. We first introduce three cost measures 

used to calculate internal-impact. The first measure 𝑐1 is calculated as the marginal 

travel distance of inserting customer 𝑖. The second cost measure 𝑐2 is calculated as 

the delay in arrival time at customer 𝑛𝑗,𝑘 caused by inserting customer 𝑖 right before 

it. This is the maximum amount of delay that will propagate along the route to all the 

customers following 𝑛𝑗,𝑘. The lower the delay, the less of an impact the insertion has 

on existing customers on the route. The third measure 𝑐3 is calculated as the time gap 

between the earliest possible arrival time at customer 𝑖 and the latest possible time 

that service can start at customer 𝑖. This measure expresses the compatibility of the 

selected customer with the specific insertion position. It is evident that a smaller time 

gap means a more compact route. Which is generally preferred because we want to 

limit the number of vehicles used. Lastly, the internal-impact is calculated as a 

weighted average of all these cost measures by using parameters 𝛽1 + 𝛽2 + 𝛽3 =

1, 𝛽1, 𝛽2, 𝛽3 ≥ 0. 

𝑐1(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) = 𝑡𝑛𝑗−1,𝑘,𝑖 + 𝑡𝑖,𝑛𝑗,𝑘 − 𝑡𝑛𝑗−1,𝑘,𝑛𝑗,𝑘 

𝑐2(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) = max (𝑒𝑛𝑗,𝑘 , 𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑛𝑗,𝑘) 

+max(𝑒𝑛𝑗,𝑘 , 𝑎𝑛𝑗−1,𝑘 + 𝑠𝑛𝑗−1,𝑘 + 𝑡𝑛𝑗−1,𝑘,𝑛𝑗,𝑘) 

𝑐3(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) = 𝑙𝑖 − (𝑎𝑛𝑗−1,𝑘 + 𝑠𝑛𝑗−1,𝑘 + 𝑡𝑛𝑗−1,𝑘,𝑖) 

𝐼𝐼(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) = 𝛽1𝑐1(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘 , 𝑛𝑗,𝑘) + 𝛽2𝑐2(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) 

+𝛽3𝑐3(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) 

 

Finally, the overall 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1, 𝑛𝑗) is calculated as a weighted average of self-

impact, external-impact, and internal-impact with parameters 𝛼𝑆𝐼 + 𝛼𝐸𝐼 + 𝛼𝐼𝐼 = 1, 𝛼𝑆𝐼 , 𝛼𝐸𝐼 , 𝛼𝐼𝐼 ≥

0. 

𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1, 𝑛𝑗) = 𝛼𝑆𝐼𝑆𝐼(𝑖, 𝑟𝑘, 𝑛𝑗−1, 𝑛𝑗) + 𝛼𝐸𝐼𝐸𝐼(𝑖) +𝛼𝐼𝐼𝐼𝐼(𝑖, 𝑟𝑘 , 𝑛𝑗−1, 𝑛𝑗) 

Another insertion procedure similar to the one described above is developed to insert 

only one customer into the current vehicle route. This procedure is called during the New 

Request Event. 
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Algorithm 2: Insert One Customer 

Input: customer 𝑖, partial solution 𝑆𝑡 

Output: updated partial solution 𝑆𝑡 

 

for each vehicle route 𝑟𝑘 ∈ 𝑆𝑡 

 for each feasible insertion position (𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) ∈ 𝑟𝑘 

  calculate 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘); 

sort 𝑖𝑚𝑝𝑎𝑐𝑡(𝑖, 𝑟𝑘, 𝑛𝑗−1,𝑘, 𝑛𝑗,𝑘) and find minimum; 

insert 𝑖 into 𝑟𝑘
∗ at position (𝑛𝑗−1,𝑘

∗ , 𝑛𝑗,𝑘
∗ ), corresponding to the minimum impact; 

 

4.2 Local Search 

As described above, at each decision epoch, the construction heuristic is first called to 

build an initial partial solution serving all confirmed customers, and as many anticipated 

customer as possible. A local search heuristic follows to improve the initial solution. Since this 

heuristic is called during the day, while vehicles are traveling and serving customers, it has to be 

efficient. Thus we need to develop a local search procedure that balances between performance 

and speed. 

The local search procedure we develop consists of two search operators (moves) and a 

simulated annealing-like mechanism to help the search escape from a local optimum. Simulated 

Annealing (SA) is a metaheuristic first proposed by Kirkpatrick (1983). The algorithm has then 

been studied extensively and adapted to solve various problems. Early attempts to use simulated 

annealing in solving vehicle routing problems are presented by Teodorović and Goran (1992), 

and by Osman (1993). Since the construction heuristic tries to minimize the total travel distance 

and the number of vehicles used, all the routes in the initial solution are fairly packed with 

customers. Besides, tight and hard time window constraints limit the neighborhood structure of 

the intra-route search operators. Thus both search operators we select are inter-route operators, 

namely the relocation operator, and cross operator. 

The relocation operator is originally proposed by Savelsbergh (1992) for the classical 

VRP. This operator randomly selects two routes 𝑟1, 𝑟2 (𝑟1 must be non-empty) and a customer 
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𝑛𝑖 ∈ 𝑟1. It then tries to relocate 𝑛𝑖 to a random location on 𝑟2. If both new routes are feasible, the 

move is accepted with a certain probability depending on the acceptance rule of the simulated 

annealing-like mechanism. 

The cross operator is originally proposed by Savelsbergh (1992) and studied by many 

researchers including Potvin and Rousseau (1995). This operator randomly selects two non-

empty routes 𝑟1, 𝑟2 and one customer on each route 𝑛𝑖 ∈ 𝑟1, 𝑛𝑗 ∈ 𝑟2. It splits routes 𝑟1, 𝑟2 at the 

position immediately following 𝑛𝑖 and 𝑛𝑗  respectively. Then two new routes are constructed by 

switching the slipped segments of the routes. If both new routes are feasible, the move is 

accepted with a certain probability depending on the acceptance rule of the simulated annealing-

like mechanism. 

Algorithm 3 shows how these two operators are incorporated in the simulated annealing-

like mechanism.𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is a solution parameter that limits the number of iterations to 

perform for each search operator. In order to control the maximum amount of time used by the 

local search heuristic, we use the maximum number of iterations as the stopping criteria, instead 

of using the convergence rate. 

 

Algorithm 3: Local Search 

Input: partial solution 𝑆𝑡 

Output: improved partial solution 𝑆𝑡 

 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1;  

while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≤ 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
; 

 𝑐𝑜𝑠𝑡 =total cost of 𝑆𝑡; 

 perform search operator, get 𝑆𝑡
′; 

 𝑐𝑜𝑠𝑡′ =total cost of 𝑆𝑡
′; 

 if 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑅𝑢𝑙𝑒(𝑐𝑜𝑠𝑡, 𝑐𝑜𝑠𝑡′, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) == TRUE 

  𝑆𝑡 = 𝑆𝑡
′; 

 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +; 
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4.3 Waiting Time Adjustment 

As mentioned before, a sequence of customer locations alone does not uniquely 

determine a solution in the dynamic vehicle routing environment, due to possible slack time 

along the route. We need to specify the time when each vehicle arrives at and departs from each 

customer location. Based on the same sequence of consumer locations, how to distribute the 

slack time among all the customers on the route is a key factor that affects the final cost of a 

solution. Indeed, waiting is shown to be a useful strategy in handling dynamic customer arrivals 

especially those with time windows (Pillac et al., 2013). 

We develop a waiting time adjustment scheme that aims to increase the flexibility of the 

partial vehicle routes in light of possible new customer requests. The general idea is that vehicles 

should wait at their current customer locations after service, and travel to the next customer at 

the earliest time to ensure no waiting time at the next customer. Doing so allows vehicles extra 

time waiting for new information to be revealed, instead of being pre-maturely committed to the 

next customer (because we do not allow pre-emption). This waiting time adjustment scheme is 

called Push Backward. 

By default, we set all arrival and departure times based on wait-first strategy. That is, all 

vehicles wait at their current customer location after service (if necessary), and travel to their 

next customer at the earliest time to ensure no waiting time at the next customer. Equivalently 

speaking, the arrival time at each customer is always the same as the time when service starts at 

the customer. For simplicity, we use 𝑖 to denote a customer, 𝑖− and 𝑖+ to denote the predecessor 

and successor of that customer on the route containing 𝑖 . Then this waiting strategy can be 

represented as follows. 

𝑎𝑖 = max{𝑒𝑖, 𝑎𝑖− +𝑠𝑖− + 𝑡𝑖−,𝑖} 

𝑏𝑖 = 𝑎𝑖+ − 𝑡𝑖,𝑖+ 

The arrival time at customer 𝑖 is the maximum of the beginning of his/her service time 

window and the earliest time that the vehicle can arrive. The time when the vehicle departs from 

customer 𝑖 is set backward based on the time that the vehicle arrives at his/her successor. 

 

Algorithm 4: Push Backward 

Input: partial solution 𝑆𝑡 
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Output: waiting time adjusted partial solution 𝑆𝑡 

 

for each route 𝑟𝑘 ∈ 𝑆𝑡 

 for 𝑖 = 1, 𝑖 ≤ |𝑟𝑘| 

𝑎𝑛𝑖 = max{𝑒𝑛𝑖 , 𝑎𝑛𝑖−1 +𝑠𝑛𝑖−1 + 𝑡𝑛𝑖−1,𝑛𝑖}; 

𝑏𝑛𝑖−1 = 𝑎𝑛𝑖 − 𝑡𝑛𝑖−1,𝑛𝑖 ; 

++ 𝑖; 

 

We have also developed another waiting time adjustment scheme that tries to increase the 

chance of accommodating anticipated customers when they actually make a service request. 

Recall that at each decision epoch, a new set of anticipated customers is constructed and 

scheduled in the partial vehicle routes. These customers remain in the anticipated set until either 

when the next decision epoch is reached (at which time they become unconfirmed) or when the 

customer requests service (at which time they become either confirmed or rejected), whichever 

comes first. So it is preferred that anticipated customers can wait as long as possible before 

letting the vehicle drop them from the route, since vehicles do not travel to anticipated customers 

before they become confirmed. In particular, we work from the end of the route to the front, and 

try to push all arrival and departure times as much towards to the end of the horizon as possible. 

We do so for every customer until (and including) the first anticipated customer on the route 

(counting from the front). Thus we have created the largest slack time right before the first 

anticipated customer on the route. This slack time allows the maximum amount of time for the 

vehicle to wait for the anticipated customer to request service, while maintaining time window 

feasibility for all the other customers. 

 

Algorithm 4: Push Forward 

Input: partial solution 𝑆𝑡 

Output: waiting time adjusted partial solution 𝑆𝑡 

 

for each route 𝑟𝑘 ∈ 𝑆𝑡 

 if 𝑟𝑘 contains at least one anticipated customer 

  let 𝑛𝑖∗ denote the first anticipated customer on 𝑟𝑘 
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  for 𝑖 = |𝑟𝑘|, 𝑖 ≥ 𝑖∗ 

𝑎𝑛𝑖 = min{𝑙𝑛𝑖 , 𝑎𝑛𝑖+1 − 𝑡𝑛𝑖,𝑛𝑖+1}; 

𝑏𝑛𝑖 = 𝑎𝑛𝑖+1 − 𝑡𝑛𝑖,𝑛𝑖+1; 

𝑖 − −;  
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5. Experimental Results 

5.1 Problem Instances and Realizations 

We test our model and solution approach on a modified Solomon (1987) vehicle routing 

problem with time windows (VRPTW) instance. We call Solomon instances base instances of 

our experiments. A base instance specifies the set of all customers with their locations, demands, 

and time windows. It also specifies the length of the planning horizon, the maximum number of 

vehicles available, and the capacity of each vehicle. We transform a base instance into a DVRP 

instance within the dynamic context by specifying two parameters, namely the percentage of 

advance customers (𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡), and the probability that a dynamic customer makes a request 

(𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏). Therefore the combination of a base instance with two instance parameters 

uniquely determines a DVRP instance. In addition, given that customer 𝑖 is to make a request, 

his/her request time is defined by the conditional probability density function 𝑓𝑖(𝑡). We use 

triangular distribution functions to model 𝑓𝑖(𝑡) . In particular, the minimum value of the 

distribution is set to 0. The maximum value of the distribution is set to be equal to the beginning 

of the time window of each customer, 𝑒𝑖 . The mode of the distribution is set to 
𝑒𝑖

4
. By this 

construction, the dynamic customers will always request service between the beginning of the 

day and the time when their service time windows begin. They have higher chances of making 

requests early within the time frame. This setup tends to make the dynamic vehicle routing 

problem more feasible, since it gives more time to schedule the request when a dynamic 

customer makes a request. 

A DVRP instance constructed as above specifies all deterministic and stochastic 

information of the problem. A realization of the problem specifies the set of advance customers, 

a subset of dynamic customers who are to make a request, and the precise request times of these 

dynamic customers. A realization reflects the actual routing problem faced by decision makers, 

and is constructed in the following steps. 

 

Construct Realization 

Input: DVRP instance 

Output: realization 
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Let 𝑛𝑢𝑚𝐴𝐶 = 𝑁 ∗ 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡; 

Let 𝑝𝑒𝑟𝑚 be a random permutation of the sequence (1, … ,𝑁); 

for 𝑖 = 1,… , 𝑛𝑢𝑚𝐴𝐶 

 insert customer 𝑝𝑒𝑟𝑚(𝑖) into 𝔸ℂ; 

for each customer 𝑖, 𝑖 ∉ 𝔸ℂ 

 sample 𝑢 ∼ 𝑈𝑛𝑖(0,1); 

 if 𝑢 ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 

  sample 𝑟𝑖 ∼ 𝑓𝑖(𝑡); 

  construct a “new request” event for customer 𝑖 at time 𝑟𝑖; 

 

We will build multiple DVRP instances corresponding to different value combinations of 

instance parameters. In order to reduce the variability of performance of the different solution 

approaches, each instance is replicated twenty times (twenty realizations), and the average result 

is reported. 

 

5.2 Solution Parameters and Measurements 

There are multiple solution parameters we can adjust to modify the behavior of the 

proposed look-ahead dynamic vehicle routing framework. These parameters are: the number of 

decision epochs 𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ, the length of forecast horizon 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛, the mechanism 

used to construct the anticipated set of customers (either threshold or sampling forecast), and the 

parameters used in the heuristic algorithm. After running preliminary experiments, we have fixed 

the values of some parameters to levels that consistently generate better performance. In 

particular, we have set 𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ = 10 , 𝛼𝑆𝐼 = 0.33, 𝛼𝐸𝐼 = 0.33, 𝛼𝐼𝐼 = 0.34, 𝛽1 = 0.8, 𝛽2 =

0.1,  and 𝛽3 = 0.1.  We test all other parameters and present the behavior of the solution 

framework in the next subsection. 

For each realization of the problem, we compare the following three routing strategies in 

terms of three performance measurements, namely the total travel distance, the total number of 
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vehicles used, and the total number of rejected customers. We now introduce the routing 

strategies and the measurements we use. 

1. Static routing: a static vehicle routing problem with time windows is built based on 

the realization, then solved by using a static VRP algorithm. In particular, the set of 

advance customers and the subset of dynamic customers who end up making a 

request are combined. It is then assumed that all of these customer requests are 

known at the beginning of the day and must be served. We solve this classic VRP by 

applying Algorithm 1, followed by Algorithm 3, which runs the cross operator for 

5000 iterations, and then the relocation operator for another 5000 iterations. We 

record the total distance 𝑠𝑡𝑎𝑡𝑖𝑐_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  and number of vehicles used 

𝑠𝑡𝑎𝑡𝑖𝑐_𝑁𝑢𝑚𝑉 . When using the static routing strategy, the number of rejected 

customers is always 0. This routing strategy serves as the base for comparison. The 

final solution generated by this strategy is called the static routing solution. 

2. Look-ahead dynamic routing: the look-ahead vehicle routing framework is applied on 

the realization of the problem. Ten decision epochs are built into the planning 

horizon. At each epoch, Algorithm 1 is first called to route only the confirmed 

customers. Then the algorithm is called a second time to route the anticipated 

customers. Algorithm 3 follows to improve the initial solution. To ensure a fair 

comparison with the static routing strategy, we run each local search operator for 500 

iterations at each decision epoch, such that the total number of iterations is the same 

as in the static strategy. Whenever a dynamic customer requests service, the 

procedure New Request Event is called to handle the request. 

We start this approach by imposing an extra constraint that the total number of 

vehicles used at any point in time does not exceed 𝑠𝑡𝑎𝑡𝑖𝑐𝑁𝑢𝑚𝑉. Doing so may lead 

to infeasibility of the problem (not all confirmed customer can be routed) or rejection 

of customer requests (a dynamic customer cannot be accommodated when he/she 

requests service). Thus we adapt a trial-and-error procedure to find the minimum 

number of vehicles that will ensure feasibility and no rejection of customer requests. 

In particular, we start by setting the number of vehicles allowed equal to 

𝑠𝑡𝑎𝑡𝑖𝑐𝑁𝑢𝑚𝑉, and gradually increase this number until the dynamic routing strategy 

generates a feasible solution without any rejections. We call this final solution the 
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look-ahead dynamic solution. For this strategy, we record the number of rejected 

customers, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 , when using the 𝑠𝑡𝑎𝑡𝑖𝑐_𝑁𝑢𝑚𝑉  vehicles. We also 

record the 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑁𝑢𝑚𝑉 number of vehicles that ensures no rejection of customer 

requests in the look-ahead dynamic routing solution and the corresponding total travel 

distance 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

3. Advance routing: this strategy makes no forecast and thus no planning on dynamic 

customers. The vehicle routes are constructed based on only the known demand. In 

particular, we apply Algorithm 1 and Algorithm 3 on only the set of advance 

customers. Each operator runs for 5000 iterations. No more construction and local 

search heuristics are called during the day. Whenever a dynamic customer requests 

service, the procedure New Request Event is called to handle the request. A similar 

trial-and-error procedure as described above is used. The final solution that ensures 

feasibility and no request rejection is called the advance routing solution. For this 

strategy, we record the number of rejected customers, 𝑎𝑑𝑣_𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑, when using the 

𝑠𝑡𝑎𝑡𝑖𝑐_𝑁𝑢𝑚𝑉  vehicles. We also record the 𝑎𝑑𝑣_𝑁𝑢𝑚𝑉  number of vehicles that 

ensures no rejection of customer requests in the advance routing solution and the 

corresponding total distance 𝑎𝑑𝑣_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

 

5.3 Simulations and Results 

All the experimental results in this section used the Solomon (1987) instance R110 as the 

base instance. In the R110 base instance, all customers are randomly located around a central 

depot. None of the customer service time windows starts at time 0. This allows us to define the 

conditional probability functions of request times as described in Section 5.1. The length of the 

planning horizon is 230 time steps (𝑇𝑚𝑎𝑥 = 230). Since we have set 𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ = 10, the 

length of each time period is 23 time steps. When testing the look-ahead dynamic routing 

strategy, we set the value of 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 to be roughly equal to multiples of the length of 

a time period. We constructed various DVRP instances by using different value combinations of 

𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 , and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 . The tested levels are 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 = 0.1, 0.25, 0.5, 0.75 , and 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 = 0.25,0.5,0.75. So there are a total of 12 DVRP instances. 
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For each instance, we generate 20 realizations. We then perform the three routing 

strategies described above on each realization. The average results of the 20 realizations are 

presented below. In all the tables, we use heading “Dist %” to denote the percentage of total 

travel distance penalty of the strategy shown, as compared to the static routing strategy. We use 

heading “Vehicle” to denote the number of extra vehicles used by the strategy shown when 

compared to the static routing strategy. The heading “Rejected” denotes the number of rejected 

customers if using the same number of vehicles as in the static routing solution. It is important to 

point out that the static routing strategy assumes that all problem information are known in 

advance. In particular, it assumes that all dynamic customers who end up making a service 

request are known at the beginning of the day, so that they can be treated as advance customers. 

As a result, the static routing solution is generated based on perfect information of the problem, 

which by construction should out-perform the other two routing strategies proposed. Since the 

static routing solution is used as the base of comparison in all reported results, all performance 

measures are positive. It is also evident that lower values of all measures indicate a better 

performance. 

 

5.3.1 Advance Routing 

Table 5.1 shows the performance of the advance routing strategy over all 12 DVRP 

instances with difference combinations of 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 values. 

 When holding 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 fixed, we identify significant increasing trends in all three 

measures as 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 increases. As the number of dynamic customers increases, 

the advance routing strategy performs worse because it only considers advance 

customers in route construction and optimization. Dynamic customers are routed by 

using a myopic cheapest insertion heuristic only after they are realized. 

 On the other hand, when holding 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏  fixed, we identify significant 

decreasing trends in all three measures as 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡  increases. This can be 

explained by the inverse of the argument above. 

 We also notice that the advance routing strategy generates near-static behavior in 

cases corresponding to the highest value of 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 tested, which is 75% (bottom 

row of the table). In these cases, advance customers make up the majority of all 
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customers, and the problem is only a small deviation away from a static vehicle 

routing problem. With the lack of dynamic customers, the advance routing strategy by 

design is similar to the static strategy, which assumes that all dynamic customers are 

known at the beginning of the day, and can be treated the same as advance customers.  

 

5.3.2 Look-ahead Dynamic Routing 

Table 5.2 shows the results of the look-ahead dynamic routing strategy on the base case 

scenario. The base case scenario is designed by setting both instance parameters to a moderate 

level, namely 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 = 0.5  and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 = 0.5 . Results of the advance routing 

strategy is included in the right-most column for reference. 

 When holding the 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 fixed, we see significant decreasing trends in all 

three measures as the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  increases. The higher the threshold, the fewer 

customers we anticipate, and thus the higher the quality of anticipation, because the 

chance that these anticipated customers will actually request service and become 

confirmed is higher. This observation identifies that we want to be selective when 

constructing the set of anticipated customers, because the threshold forecast 

procedure implicitly assumes that all of the anticipated customers will request service. 

 When holding the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  fixed, the strategy with 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = 40 

always sees the best performance. 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = 40 corresponds to looking 

ahead roughly 2 time periods. Since the look-ahead dynamic routing strategy 

periodically re-optimizes the current vehicle routes, it is sufficient to look ahead a 

relatively short horizon. When we look ahead for too long, the accuracy of the 

forecast drops. However, too short a forecast horizon will not generate enough 

Table 5.1 Simulation Results of Advance Routing Strategy 
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information to construct an insightful forecast, as shown by the results when 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = 20. 

 In the base case, the look-ahead routing strategy outperforms the advance routing 

strategy in terms of total travel distance. However, the advance routing strategy 

outperforms the look-ahead routing strategy in terms of vehicle usage. The reason 

behind this observation lies in the fact that the look-ahead dynamic routing strategy 

reserves space on vehicle routes for anticipated customers. These spaces are not freed 

until either the customer requests service, or the next decision epoch is reached. This 

design will cause infeasibility of requests made by non-anticipated customers. On the 

contrary, the advance routing strategy does not forecast any customer requests. By 

scheduling only confirmed customers, this strategy always offers more available 

space on the current vehicle routes as compared to the look-ahead routing strategy. 

Thus the advance routing strategy shows its merits in terms of maximizing vehicle 

utilization and minimizing the number of rejected customers. 

Table 5.3 shows the results of the look-ahead dynamic routing strategy by varying the 

parameter 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏  and holding 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡  at 50%. When the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏  is low at 

25% , the setting of 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = 40  generates solutions with the smallest distance 

penalty on average when the threshold is set to 0.2. However, a shorter forecast horizon of 20 

time steps generates better solutions as measured by vehicle usage and the number of rejected 

customers. It shows that when the number of dynamic customers is small, it may be sufficient to 

forecast a short horizon, because there is not much information to explore before reaching the 

next decision epoch. As the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 increases to 75%, the setting of 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 =

40 still generates solutions with the smallest distance penalty on average. However, a longer 

forecast horizon of 60 time steps generates better solutions as measured by vehicle usage and the 

number of rejected customers. Equivalently speaking, as more dynamic customers request 

service, the value of forecasting increases. Longer forecast horizons provide more information on 

dynamic customer requests, thus leading to better solutions in these cases. In short, as the value 

of 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 increases, the value of 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 that corresponds to the best solutions 

also tends to increase, when holding 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 at 50%. 

Table 5.4 shows the result of the look-ahead dynamic routing strategy by varying the 

parameter 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡, and holding 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 at 50%. When the value of the 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 is 
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below the base case value, at 10% and 25%, there are relatively less advance customers. In such 

cases, a shorter forecast horizon of 20 time steps outperforms the previous-identified best 

strategy with 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = 40, especially in terms of vehicle usage and the number of 

rejected customers. This is because when the probability that a dynamic customer requests 

service is high, a long forecast horizon will include too many customers in the anticipated set. 

The probability that all anticipated customers request service drops significantly. Therefore the 

quality of the forecast drops. Anticipated customers hold up spaces on vehicle routes, increasing 

the chance that the request of a non-anticipated customer is rejected, as shown by poor vehicle 

usage and large numbers of rejected customers associated with long forecast horizons. When the  

𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 increases above the base case value to 75%, we see fairly flat behavior of the look-

ahead dynamic routing strategy across all parameter settings. In such cases, we are faced with a 

large number of advance customers, and very few dynamic customers. The problem is rather 

static and is insensitive to the length of forecast horizon and the level of threshold used by the 

forecast procedure. 
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Table 5.3 Look-ahead Dynamic Routing When Varying requestProb 

 

 

Table 5.2 Look-ahead Dynamic Routing in Base Case 
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Table 5.4 Look-ahead Dynamic Routing When Varying ACPercent 
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5.3.3 The Least Dynamic Case 

One of the most extreme cases we have tested corresponds to a problem with little 

dynamism. This is represented by setting 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡 to its highest level and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑜𝑏 to its 

lowest value. Table 5.5 shows the results of the look-ahead dynamic strategy and the advance 

routing strategy on the least dynamic case. In this case, the advance routing strategy clearly 

outperforms the look-ahead dynamic routing strategy on all performance measures. Therefore, 

when there are few dynamic customers, a straightforward advance routing strategy is sufficient 

to solve the problem. 

 

5.3.4 Comparison of Forecast Procedures 

All the experimental results presented above are based on the threshold forecast 

procedure. We have also implemented the sampling forecast procedure. We now compare their 

performance in the base case. It can be clearly seen in Table 5.6 that the threshold procedure 

outperforms the sampling procedure by a very large margin as measured by total travel distance. 

And almost always outperforms the sampling procedure in the other two measures.  This is 

because the sampling forecast procedure only draws one sample of potential future requests. 

Given that the total number of unconfirmed customers may be large, each sample alone has a 

very small probability of being the true realization of the randomness. Thus the sampling 

procedure only explores a very small fraction of the probability space, leading to a worse 

solution. The performance of the sampling procedure could be improved with more sampling and 

this is one avenue to explore in future research. 
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Table 5.5 The Least Dynamic Case 

 

 

Table 5.6 Comparison of Forecast Procedures 
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6. Implementation 

This project addresses a dynamic vehicle routing problem with uncertainties in customer 

requests. A typical application of this project is in the highly competitive trucking industry, i.e., 

companies consolidating shipments from multiple suppliers and transporting them to a central 

depot. Trucking is the dominant form of transportation used in moving goods into and out of the 

Los Angeles region, and has the highest level of interaction with other social functions. 

Methodologies that can improve the efficiency of truck movements will dramatically improve 

the overall logistics network and reduce traffic congestion in urban areas. In particular, this 

research addresses the reduction of truck traffic by reducing total vehicle miles and number of 

vehicles used through better planning when faced with uncertainties. 

The scheduling heuristics developed in this research are tested on problem-specific 

instances derived from the well-known Solomon (1987) vehicle routing problem instances. The 

performance of the proposed heuristics is compared with the performance of a static routing 

strategy and an advance routing strategy we develop. Meaningful insights can be drawn from the 

experimental results. The implementation of our heuristics will require suitable programming 

software tools such as C++, Java, etc. It also requires access to real-world customer request data 

such as distance and/or travel time between facilities, and historical information on the earliest 

and the latest time shipments are allowed to be picked up, and the service time of processing the 

shipments. The entire solution framework including all heuristics introduced is implemented in 

C++. The same code is used to generate the experimental results presented in the report. 
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7. Conclusions and Future Research 

In this study, we consider a vehicle routing problem with dynamic customer requests. 

The problem is representative of the daily operation of many logistic service providers, 

especially those who consolidate shipments from multiple suppliers. We present a look-ahead 

vehicle routing framework based on request forecasts and periodic re-optimization of the current 

vehicle routes. The look-ahead feature consists of explicitly forecasting future customer requests 

based on stochastic information available on customer request times. We develop efficient 

construction, local search, and waiting time adjustment heuristics. 

The look-ahead dynamic routing strategy we develop divides the planning horizon into 

multiple time periods of equal length. The beginning of each time period is called a decision 

epoch. At each decision epoch, a static vehicle routing problem is constructed by including both 

confirmed but not yet serviced customers at the current time and anticipated customers who are 

expected to request service based on the forecast. The static vehicle routing problem is solved by 

a construction heuristic. The initial solution is then improved by a simulated annealing-like local 

search heuristic, which balances speed and performance. Slack time along each vehicle route is 

adjusted dynamically and continuously during the day, by using two waiting time adjustment 

procedures, namely Push Forward and Push Backward. The behavior of the look-ahead 

dynamic routing strategy depends on multiple solution parameters, including the number of 

decision epochs, the length of look-ahead horizon, the forecast procedure, etc. 

We explore experimentally the sensitivity of the look-ahead routing strategy on modified 

Solomon VRP instances. We use various settings of the instance parameters to reflect different 

real-world scenarios. For each scenario, we compare the quality of the solutions of the look-

ahead dynamic routing strategy with the advance routing strategy. We are able to identify the 

best parameter settings of the look-ahead routing framework. In particular, when using the 

threshold forecast procedure to generate the set of anticipated customers, higher threshold values 

tend to out-perform lower threshold values. Based on our experimental results, the best-

performing threshold values correspond to 0.75 times the probability that a dynamic customer 

requests service. In terms of the length of the forecast horizon, the best setting depends on the 

level of uncertainty of the problem. The range of the best value settings appears to be between 1 

to 3 times the length of each time period. When the probability that a dynamic customer requests 
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service is higher, the length of the forecast horizon should be set longer, and vice versa. We see 

that the look-ahead routing strategy outperforms the advance routing strategy in terms of 

minimizing travel distance and vehicle usage in most of the scenarios, except when the problem 

is highly deterministic (with large number of advance customers and small number of dynamic 

customers). 

One aspect not captured in the current design of the solution framework is the quality of 

forecast. Intuitively speaking, the longer the forecast horizon, the higher the level of uncertainties 

in the system, thus the lower the quality of forecasts. As forecasts become less accurate, it 

becomes less beneficial to apply the look-ahead routing strategy as proposed. Current version of 

the framework assumes that the probability distributions of conditional request times are 

perfectly known, while in fact they may only be known vaguely and the quality of our 

information drops for times further away from the current time. 
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